Merit+ Circle Geometry Practice #1

1. Find \(\angle DBA \) (marked \(\theta \)).

2. Find \(\angle OZY \) (marked \(\theta \)).

3. Show that ST is parallel to QR.

4. JK is a tangent intersecting at L. If \(\angle LPN = 2 \times \angle MLK \) show that LM is the same length as MN.
Answers: Merit+ Circle Geometry Practice #1

1. **Find \(\angle DBA \)** (marked \(\theta \)).

 \[\angle ADC = 90^\circ \] (subtended from ends of a diameter)
 \[\angle DCA = 42^\circ \] (angles in triangle add to 180°)
 \[\angle DBA = 42^\circ \] (angles subtended by the same arc are equal)

2. **Find \(\angle OZY \)** (marked \(\theta \)).

 \[\angle YZX = 111^\circ \] (opposite sides of cyclic quadrilaterals add to 180°)
 \[\angle OZX = \angle OXZ \] (base angles of an isosceles triangle are equal)
 \[\angle OZX = 61^\circ \] (interior angles of a triangle add to 180°)
 \[\angle OZY = 50^\circ \] (difference between \(\angle XZY \) and \(\angle OZX \))

3. **Show that ST is parallel to QR.**

 Let \(x = \angle QOR = \angle TOS \) (vertically opposite angles are equal)
 \[\angle OST = \angle OTS \] (base angles of an isosceles triangle are equal)
 \[\angle OST = 90^\circ - \frac{1}{2}x \] (interior angles of a triangle add to 180°)
 \[\angle OQR = 90^\circ - \frac{1}{2}x \] (as for the triangle OTS above)
 \[\angle OQR \text{ and } \angle OST \text{ are alternate and equal} \]

 ST must be parallel to QR as alternate angles on a transversal are equal.

4. **JK is a tangent intersecting at L.**

 If \(\angle LPN = 2 \times \angle MLK \) show that

 LM is the same length as MN

 Let \(2x = \angle LPN \) so \(x = \angle MLK \)
 \[\angle MLO = 90^\circ - x \] (Tangent is at 90° to a radius it touches)
 \[\angle LMN = 180^\circ - 2x \] (opposite sides of cyclic quad add to 180°)
 \[\angle LON = 4x \] (angle subtended to centre is twice the angle to the sides and \(\angle LPN = 2x \))
 \[\angle ONM = 90^\circ - x \] (quadrilateral LMNO’s interior angles add to 360°)

 Since \(\angle MNO = \angle MLO \) and \(OL = ON \) (both radiuses) quadrilateral LMNO is symmetric

 LM and MN must be the same length if LMNO is symmetric.