1. \(\angle DBA = 53^\circ \). AC is a tangent to the circle at B. Find \(\angle DEB \) (marked \(\theta \)).

2. Find \(\angle WOX \) (marked \(\theta \)).

3. QRST is a parallelogram. Show that \(\triangle PQT \) is isosceles.

4. JK is parallel to ML. O is the centre of the circle. Find the size of \(\angle PMJ \).
Answers: Merit+ Circle Geometry Practice #5

1. $\angle DBA = 53^\circ$. AC is a tangent to the circle at B.
 Find $\angle DEB$ (marked θ).

 $\angle DBO = 37^\circ$ ($\angle ABO = 90^\circ$ as tangent \perp to radius)
 $\angle DEB = 53^\circ$ (interior angles Δ add to 180°)

2. Find $\angle WOX$ (marked θ).

 $\angle VWO = 71^\circ$ (Δ from radii is isosceles)
 $\angle VOW = 38^\circ$ (interior angles Δ add to 180°)
 $\angle VOX = 122^\circ$ (\angle at centre = 2x angle at edge from same arc)
 $\angle WOX = 84^\circ$ ($\angle VOX = \angle VOW + \angle WOX$)

 or calculate $\angle s$ in ΔVWO as first two steps above
 $\angle VWX = 119^\circ$ (opposite on cyclic quad add to 180°)
 $\angle OWX = 48^\circ$ (remainder after $\angle VWO = 71^\circ$ is taken off 119°)
 $\angle WXO = 48^\circ$ (Δ from radii is isosceles)
 $\angle WOX = 84^\circ$ (interior angles of Δ add to 180°)

3. QRST is a parallelogram.
 Show that ΔPQT is isosceles.

 Let $\angle TPQ = x$
 $\angle TSR = 180^\circ - x$ (Opposite angles cyclic quad add to 180°)
 $\angle TQR = 180^\circ - x$ (symmetry of parallelogram)
 $\angle TQP = x$ (angles on a line add to 180°)
 As $\angle TPQ = \angle TQP$ the ΔPQT must be isosceles

 or let $\angle PRS = y$
 $\angle TQP = y$ (corr on $||$) and $\angle TSR = 180^\circ - y$ (co-int on $||$)
 $\angle TPQ = y$ (opp on cyclic quad) and so $\angle TPQ = \angle PQT \Rightarrow$ isosceles

4. JK is parallel to ML
 O is the centre of the circle
 Find the size of $\angle PMJ$

 $\angle OLM = 41^\circ$ (corresponding on $||$ are equal)
 $\angle LMO = 41^\circ$ (Δ from radii is isosceles)
 $\angle OMP = 49^\circ$ ($\angle LMP = 90^\circ$ as from ends of diameter)
 $\angle PMJ = 131^\circ$ (angles on line add to 180°)
 or put in light blue line shown to do last step
 $\angle PMJ = 41^\circ + 90^\circ$ (vertically opposite $\angle LMO + 90^\circ$)