Y11 Context Graphs Practice #2

1. Bentley and family have a 400 km drive, and expect to average 80 km per hour.

 a. Sketch a relationship between distance and time if they travel at exactly 80 km/hr.

 b. Write an equation for that line.

 c. If they spend X hours stopped for a break in the middle, write a new equation for the line representing the second part of their trip.

2. Ebola is has spread in a country before authorities start a quarantine and treatment campaign to stop it. The number of cases can be modelled with a parabola.

 There are 450 cases at the start, and two months later the disease peaks at 600 cases.

 a. Write an equation to give the number of cases of Ebola, \(E \), relative to time, \(t \).

 b. Use your equation to show when the disease will be stopped.

3. The height of a served volleyball is given by

 \[
 h = \frac{(8-x)(x+13)}{30}
 \]

 where

 - \(h \) is height above the ground, in metres,
 - \(x \) is the distance from the net, in metres

 a. A volleyball court is 9 metres long either side of the net. Will the ball land inside the court?

 b. Will the ball go over the 2.43 m high net?

 c. What is the maximum height the ball reaches?
Answers: Y11 Context Graphs Practice #2

1.
 a. The solid line shown (must stop at axes).
 b. \(d = -80t + 400 \), or equivalent.
 c. Each hour spent stopped loses 80 km, so
 pushes the initial starting point 80 \(X \) higher.
 The gradient stays the same.
 \[d = -80t + 400 + 80X \]

2. Intercept method, uses symmetry to know that \((0, 450)\)
 means \((4, 450)\) is also a point. Use these as if
 intercepts, then raise the line by 450
 \[E = -37.5x (x - 4) + 450 \]
 Turning point method, uses turning point at \((2, 600)\)
 and fits the point \((0, 450)\) to give the multiplier
 \[E = 600 - 37.5 (x - 2)^2 \]
 b. Solving \(0 = -37.5x (x - 4) + 450 \)
 \[0 = -37.5x^2 + 150x + 450 \]
 \[0 = x^2 - 4x - 12 \quad \text{(all divided by -37.5)} \]
 \[0 = (x + 2)(x - 6) \]
 gives \(x = -2 \) or 6. So after 6 months.

3. \(h = \frac{(8-x)(x+13)}{30} \)
 a. \(x \) intercepts are \(x = 8 \) and \(-13\). The \(-13\) is the server’s side.
 So it lands inside at 8 m from the net.
 b. Putting in \(x = 0 \), gives \(h = \frac{(8-0)(0+13)}{30} = 3.47 \text{ m} \)
 So it goes over a 2.43 m net easily.
 c. Maximum halfway between intercepts of \(-13\) and 8 is at \(x = -2.5 \)
 \(h = \frac{(8-2.5)(-2.5+13)}{30} = 3.675 \text{ m} \) is the maximum height