Year 12 Algebra Excellence #6

1. Solve:
$$3^x = 6^{x-2}$$

2. Simplify fully:
$$\frac{1}{a^3 - a} + \frac{a}{1 - a^2}$$

3. Solve:
$$(x + 3)^2 > (2x + 1)^2$$

- 4. Write an expression for difference between the solutions of $y = 5x^2 + 9x + k$ Include any limits to your solution.
- 5. A bank pays interest at 6% p.a. Write an expression in terms of m, the number of months the money is invested, for a monthly rate that gives exactly result as paying 6% at the end of the year for a sum of \$1000 invested (and untouched).
- 6. A ball is thrown in a parabola on level ground so that goes 30 metres distance, reaching a maximum height of 12 metres. For what proportion of the time is it above 9 metres?
- 7. Rewrite $k = 5^{2x-1}$ to make x the subject, and simplify fully to a single log term.

8. Show that
$$\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x} = \frac{1}{\log_{60} x}$$

Answers: Year 12 Algebra Excellence #6

1. Solve
$$3^x = 6^{x-2}$$

$$\Rightarrow 3^{2} \times 3^{x-2} = 2^{x-2} \times 3^{x-2} \qquad \text{or} \qquad \log(3^{x}) = \log(6^{x-2})$$
Note $6^{x-2} = 2^{x-2} \times 3^{x-2}$ as each 6 is 3×2 $x \log 3 = (x-2) \log 6$

$$\Rightarrow 3^{2} \times 3^{x-2} = 2^{x-2} \times 3^{x-2}$$
 $x \log 3 = x \log 6 - 2 \log 6$

$$\Rightarrow \log 9 = (x-2) \log 2$$
 $x (\log 3 - \log 6) = 2 \log 6$

$$\Rightarrow x = \log 9 \div \log 2 + 2$$
 $x = 2 \log 6 \div (\log 3 - \log 6)$

Answer x = 5.17

2. Simplify fully:
$$\frac{1}{a^3 - a} + \frac{a}{1 - a^2}$$

$$= \frac{1}{a^3 - a} + \frac{a^2}{a - a^3} \qquad = \frac{1}{a^3 - a} - \frac{a^2}{a^3 - a} \qquad = \frac{1 - a^2}{a - a^3} \qquad = \frac{-1(a^2 - 1)}{a(a^2 - 1)}$$

$$= \frac{-1}{a}$$

3. Solve:
$$(x+3)^2 > (2x+1)^2$$

$$\Rightarrow x^2 + 6x + 9 > 4x^2 + 4x + 1 \Rightarrow 0 > 3x^2 - 2x - 8$$

$$\Rightarrow (3x+4)(x-2) < 0 \qquad \text{which happens when only one bracket is negative}$$

Answer:
$$\frac{-4}{3} < x < 2$$

4. Write an expression for difference between the solutions of $y = 5x^2 + 9x + k$

General solutions to a quadratic are via the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \qquad = \frac{-9 \pm \sqrt{9^2 - 4 \times 5 \times k}}{2 \times 5}$$

The difference between the solutions is + solution minus the - solution

$$\Delta x = \frac{-9 + \sqrt{9^2 - 4 \times 5 \times k}}{2 \times 5} - \frac{-9 - \sqrt{9^2 - 4 \times 5 \times k}}{2 \times 5} = \frac{2\sqrt{81 - 20}}{10}$$

$$\Delta x = 0.2\sqrt{81 - 20k}$$

But if 81 - 20k < 0, then there are no solutions to have a difference of:

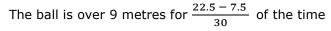
true only for $k \le 4.05$

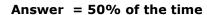
5. A bank pays interest at 6% p.a. Write an expression in terms of m, the number of months the money is invested, for a monthly rate that gives exactly result as paying 6% at the end of the year for a sum of \$1000 invested (and untouched).

monthly $rate^{12} = 1.06$ is the basic situation

$$r = \sqrt[12]{1.06} = 1.004867$$

Equation is: **Sum = 1000 \times 1.004867^{m}**


6. A ball is thrown in a parabola on level ground so that goes 30 metres distance, reaching a maximum height of 12 metres. For what percentage of the time is it above 9 metres?


$$h = k x(x - 30)$$

$$12 = k \times 15(15 - 30)$$
 $\Rightarrow k = \frac{-4}{75}$

Need to solve
$$9 = \frac{-4}{75} x(x - 30)$$

$$x = 7.5$$
 and 22.5

7. Rewrite $k = 5^{2x-1}$ to make x the subject, and simplify fully to a single log term

Using our formula sheet $y = b^x$ means $x = \log_b y$

$$k = 5^{2x-1} \quad \Rightarrow \quad \log_5 k = 2x - 1$$

$$\Rightarrow$$
 2x = log 5 k + 1

$$\Rightarrow 2x = \log_5 k + \log_5 5 = \log_5 (5k)$$

$$\Rightarrow$$
 $x = \frac{1}{2} \log_5(5k)$

$$x = \log_5(\sqrt{5k})$$

8. Show that $\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x} = \frac{1}{\log_{60} x}$

Helps to know that
$$\log_b x = \frac{\log_{10} x}{\log_{10} b}$$
 so $\frac{1}{\log_{10} x} = \frac{\log_{10} b}{\log_{10} x}$

$$\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x}$$

$$= \frac{\log_{10}3}{\log_{10}x} + \frac{\log_{10}4}{\log_{10}x} + \frac{\log_{10}4}{\log_{10}x} = \frac{\log_{10}3 + \log_{10}4 + \log_{10}4}{\log_{10}x}$$

$$= \frac{\log_{10}(3\times4\times5)}{\log_{10}x} \qquad \qquad = \frac{\log_{10}60}{\log_{10}x} \qquad \qquad = \frac{1}{\log_{60}x}$$

