Sequences and Series Practice #3

$$t_{n} = a + (n - 1) d t_{n} = a r^{n-1}$$

$$S_{n} = \frac{n}{2} [2a + (n - 1)d] S_{n} = \frac{a(r^{n} - 1)}{r - 1} S_{\infty} = \frac{1}{1}$$

- Al has just opened a second hand bookshop. In the first month he sells 400 books. In the second months he sells 430. In the third month he sells 460. If that pattern continues:
 - a) How many books will he sell in his twentieth month?
 - b) How many books will he sell in total in his first two years?
 - c) When will he sell his 10,000th book?
- 2. Sue starts playing Minesweeper on 1 April.

Her best score on the first day is 880. She gets 10% better each day, so 792 on her next day (90% of her previous score).

- a) What would her score be at the end of the month? (30 days)
- b) How long would it take her to get her best score to under 60?
- A small gaming company release a new game. In the first month it sells only 300 copies. But each month after that sales increase by 60% over the previous month as players tell others how good it is.

How many games will it sell in ten months?

- 4. A disease spreads by personal contact. It lasts a week, and in that time each person with it infects 2.4 other people. If 40 people start infected, how long would it take so that 10,000 people had had the disease?
- 5. Algal bloom covers 20% of a lake in 2012 and 25% in 2016.

How much would be covered by 2024, assuming a constant amount of growth?

					T
2	3	1	3	2	2
1		1	2		
1	1	1	1		
1					
2	1	1			1
4	1	З	2	2	2

Answers: Sequences and Series Practice #3

1. a) How many books will he sell in his twentieth month?

a = 400, d = +30, want t_{20} $t_n = a + (n - 1)d = 400 + (20 - 1) \times 30$ 970 books

b) How many books will he sell in total in his first two years?

a = 400, *d* = +30, want *S*₂₄
*S*_n =
$$\frac{n}{2}$$
[2a + (n - 1)d] = $\frac{24}{2}$ [2 × 400 + (24 - 1) × 30]
17,880 books

c) When will he sell his 10,000th book?

$$a = 400, d = +30, \text{ want } S_n = 10000$$

 $S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{n}{2} [2 \times 400 + (n - 1) \times 30] = 10000$
in his 16th month (solved by quadratics or guess and check)

2. a) What would her score be at the end of the month? (30 days)

$$a = 880, r = 0.9, n = 10 t_{30} = a r^{n-1} = 880 \times 0.9^{30-1} = 41$$
 (rounded)

b) How long would it take her to get her best score to under 60?

a = 880, r = 0.9, n = 10 $t_n = 880 \times 0.9^{n-1} < 60$ n < 26.489 by logs or guess and check On the 26th day (must be rounded)

3. How many games will it sell in ten months?

$$a = 300, r = 1.6, n = 10$$
 $S_{10} = \frac{a(r^n - 1)}{r - 1} = \frac{300 \times (1.6^{10} - 1)}{1.6 - 1} = 54,476$ games

4. If 40 people start infected, how long would it take to spread to a total of 10,000?

 $a = 40 \ r = 2.4 \ 40 \times 2.5^{n-1} = 10\ 000$ n = 7.3 by logs or guess and check **During the seventh week**

5. How much would be covered by 2024, assuming a constant amount of growth?

 $a = 20\%, d = \frac{5\%}{4} = 1.25\%, 2012 \text{ is } t_0, 2016 \text{ is } t_{12}$ $t_n = a + (n - 1)d$ $t_{12} = 20 + (12 - 1) \times 1.25 = 33.75\%$

Achieved = Q1 a) & b), Q2 a), Q3. Merit = Q1 c) and Q2 b). Excellence = Q4 and Q5.