Basic Arithmetic (Addition) Sequences

$t_{n}=a+(n-1) d$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

1. For the sequence starting with 10 and increasing by 4 each time:
a) What value is the $15^{\text {th }}$ term in the sequence?
b) If we add the first 15 terms, what do they add up to?
2. For the sequence $12,15,18,21, \ldots$
a) How large is the $40^{\text {th }}$ number in the pattern?
b) What is the total sum of the first 40 numbers in the pattern?
3. For the sequence $110,102,94,86, \ldots$
a) What value is the $20^{\text {th }}$ term in the sequence?
b) What do all the terms up to the $20^{\text {th }}$ add up to?
4. Peter runs 6 km in the first week, 8 km in the next week, 10 the week after, etc.
a) How far would he run in the $15^{\text {th }}$ week if he kept that pattern going?
b) How far would he have run in total after 12 weeks?
5. A town council spends $\$ 400,000$ each year on its parks. It agrees to increase that spending by another \$25,000 each year.
a) How much would the town be spending by the eighth year?
b) How much would the total spending on parks be after 12 years?
6. Merit: For the sequence $40,44,48,52, \ldots$
a) Which term is the first to be more than 200?
b) If we add them up as we go, when does the total get to 1000 ?

Answers: Basic Arithmetic (Addition) Sequences

1. $\mathrm{a}=10, \mathrm{~d}=4, \mathrm{n}=15$
a) $t_{15}=10+(15-1) \times 4=66$
b) $\quad S_{15}=\frac{15}{2}(2 \times 10+(15-1) \times 4)=570$
2. $a=12, d=3, n=40$
a) $t_{40}=12+(40-1) \times 3=129$
b) $\quad S_{40}=\frac{12}{2}(2 \times 12+(40-1) \times 3)=846$
3. $a=110, d=-8, n=20$
a) $t_{20}=110+(20-1) \times-8=-42$
b) $\quad S_{20}=\frac{20}{2}(2 \times 110+(20-1) \times-8)=680$
4. $a=6, d=2, n=15$ and 12
a) $t_{20}=6+(15-1) \times 2=34$
b) $\quad S_{12}=\frac{12}{2}(2 \times 6+(12-1) \times 2)=204$
5. $a=400,000, d=25,000, n=8$ and 12
a) $t_{8}=400000+(8-1) \times 25000=\$ 575,000$
b) $\quad S_{12}=\frac{12}{2}(2 \times 400000+(12-1) \times 25000)=\$ 6450000$
6. $a=40, d=4, n$ is unknown
a) $t_{\mathrm{n}}=200=40+(\mathrm{n}-1) \times 4$
Solving $\mathrm{n}=40$

So the $41^{\text {st }}$ is the first over 200
b) $\quad S_{12}=1000=\frac{n}{2}(2 \times 40+(n-1) \times 4)$

Solving $n=14.79$
So the $15^{\text {th }}$ term

