Basic Geometric (Multiplication) Sequences

$$
\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1} \quad \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}
$$

1. For the sequence starting with 10 and multiplying by 3 each time:
a) What value is the $6^{\text {th }}$ term in the sequence?
b) If we add the first 6 terms, what do they add up to?
2. For the sequence $12,18,27,40.5, \ldots(r=1.5)$
a) How large is the $20^{\text {th }}$ number in the pattern?
b) What is the total sum of the first 20 numbers in the pattern?
3. For the sequence $100,80,64, \ldots(r=0.8)$
a) What value is the $15^{\text {th }}$ term in the sequence?
b) What do all the terms up to the $15^{\text {th }}$ add up to?
4. Peter runs 8 km in the first week. He wants to increase it by 20% each week $(r=1.2)$.
a) How far would he run in the $15^{\text {th }}$ week if he was to do that?
b) How far would he have run in total after 12 weeks?
5. A town council spends $\$ 600,000$ each year on its parks. It wants to decrease its spending by 5% each year $(r=0.95)$.
a) How much would the town be spending by the eighth year?
b) How much would the total spending on parks be after 12 years?
6. Merit: For the sequence 200, 220, 242, 266.2, ...
a) Which term is the first to be more than 400 ?
b) If we add them up as we go, when does the total get to 10000 ?

Answers: Basic Geometric (Multiplication) Sequences

1. $a=10, r=3, n=6$
a) $\mathrm{t}_{6}=10 \times 3^{6-1}=2430$
b) $\mathrm{S}_{6}=\frac{10\left(3^{6}-1\right)}{3-1}=3640$
2. $a=12, r=1.5, n=20 \ldots$
a) $\mathrm{t}_{20}=12 \times 1.5^{20-1}=26602.05$
b) $\mathrm{S}_{20}=\frac{12\left(1.5^{20}-1\right)}{1.5-1}=79782.16$
3. $a=100, r=0.8, n=15$
a) $\mathrm{t}_{15}=100 \times 0.8^{15-1}=4.398$
b) $\mathrm{S}_{15}=\frac{100\left(0.8^{15}-1\right)}{0.8-1}=482.4$
4. $a=8, r=1.2, n=15$ and 12
a) $\mathrm{t}_{15}=8 \times 1.2^{15-1}=102.71$
b) $\mathrm{S}_{12}=\frac{8\left(1.2^{12}-1\right)}{1.2-1}=316.64$
5. $a=\$ 600,000, r=0.95, n=8$ and 12
a) $\mathrm{t}_{8}=600000 \times 0.95^{8-1}=\$ 419,002$
b) $\mathrm{S}_{12}=\frac{600000\left(0.95^{12}-1\right)}{0.95-1}=\$ 5,515,679$
6. $a=200, r=1.1(220 \div 200), n$ is unknown
a) $t_{n}=400=200 \times 1.1^{n-1} \quad$ solving, $n=7.27$
so the $8^{\text {th }}$ term will be the first over 400
b) $\quad S_{n}=10000=\frac{200\left(1.1^{n}-1\right)}{1.1-1} \quad$ solving, $n=18.799$ by the time we get to the $19^{\text {th }}$ term
