Sequences and Series Practice \#4

$t_{n}=a+(n-1) d$
$t_{n}=a r^{n-1}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$S_{\infty}=\frac{a}{1-r}$

1. Rueben has started powerlifting. He can press 94.5 kg at present. His goal is to increase that by 1.5 kg every month. If he can do that:
a) How much will he be lifting in 24 months?
b) How long will it take him until he is lifting 120 kg ?

2. A new combine harvester costs $\$ 450,000$. It is estimated to lose 15% of its value every year. How much will it be worth in ten years' time?
3. Ruby has a sprint training using flags. After she has collected a flag she returns to the start line.

The first flag is 10 m out. After that they are 4 m apart.

How many flags will it take her to run at least 800 m?
 (Remember, she runs to the flag and back each time.)
4. A charity collects $\$ 20,000$ in its first week of a new campaign. The next week it collects only 80% of that $(\$ 16,000)$, and the week after that only 80% of that $(\$ 12,800)$. If the pattern continues:
a) How much will it raise in the first 10 weeks?
b) They decide that if they are not getting at least $\$ 2,000$ in a week that the campaign should be stopped. Advise how long it should run for.
5. One Pacific island has 3,400 people, and is increasing by 2.5% a year. Another has 4,800 people, and is increasing by 1.8% a year. How long till they have the same number of people if those rates remain the same?

Answers: Sequences and Series Practice \#4

1. a) How much will he be lifting in 24 months?
$a=94.5, d=+1.5$, want $t_{24} t_{n}=a+(n-1) d=94.5+(24-1) \times 1.5$
129 kg
b) How long will it take him until he is lifting 120 kg ?
$a=94.5, d=+1.5$, want $t_{n}=140 \quad t_{n}=a+(n-1) d$
$120=94.5+(n-1) \times 1.5$
Solving gives 18 months
2. A new combine harvester costs $\$ 450,000$. It is estimated to lose 15% of its value every year. How much will it be worth in ten years' time?
$a=450,000, r=0.85, n=10 \quad t_{10}=a r^{n-1}=450000 \times 0.85^{10-1}$
\$60,398
3. The first flag is 10 m out. After that they are 4 m apart. How many flags will it take her to run at least 800 m ?
$a=20, d=+8$, want $S_{n}=800 \quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$800=\frac{n}{2}[2 \times 20+(\mathrm{n}-1) \times 8]$
Solving gives $n=12.28$ So on the way to the $\mathbf{1 3}^{\text {th }}$ flag
4. a) How much will it raise in the first 10 weeks?

$$
a=20,000, r=0.8, n=10 \quad S_{10}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{20000 \times\left(0.8^{10}-1\right)}{0.8-1}
$$

\$89263
b) They decide that if they are not getting at least $\$ 2,000$ in a week that the campaign should be stopped. Advise how long it should run for.

$$
\begin{aligned}
& a=20000, r=0.8, \text { want } t_{\mathrm{n}}>2000 \quad t_{\mathrm{n}}=a r^{n-1} \\
& 2000>20000 \times 0.80^{\mathrm{n}-1} \\
& \text { Solving gives } \mathrm{n}=11.31 \quad \text { So should stop after } 11 \text { weeks }
\end{aligned}
$$

5. 3,400 people increasing by 2.5% a year $=4,800$ people increasing by 1.8% a year

$$
\begin{aligned}
& t_{n}=a r^{n-1} \quad 3400 \times 1.025^{n-1}=4800 \times 1.018^{n-1} \\
& 3400 \div 4800=(1.018 \div 1.025)^{n-1} \quad \text { Solving gives } n=51.3
\end{aligned}
$$

Soon after 51 years (at a population of around 11774)

