Level 2 Trigonometry Sectors and Segments \#1

All curves shown are all parts of circles.

1. Find the perimeter of the sector

2. Calculate the shaded area

3. Calculate the shaded area

4. OAC is a sector, of radius 8 cm . $\angle A B C=80^{\circ}$ and $A B=7 \mathrm{~cm}$ What is the shaded area?

5. Find the shaded area in terms of x

6. The area is $25 \mathrm{~m}^{2}$. What is the radius?

7. Find the perimeter of the segment.

8. A concrete paving block is shown from above. It is 45° at the "centre" and 5 cm wide.

What is the length of the inner radius, r, if the shaded area is $25.5 \mathrm{~cm}^{2}$?

Answers: Level 2 Trigonometry Sectors and Segments \#1

Rounding errors will occur unless you carry all the decimal places.

1. $\mathrm{p}=\left[\frac{110}{360} \times \pi \times 2 \times 7\right]+7+7=\mathbf{2 7 . 4 4}$
or
$110^{\circ}=110 \times \frac{2 \pi}{360}=1.92 \mathrm{rad} \quad \mathrm{p}=\mathrm{r} \theta+2 r=7 \times 1.92+7+7=27.44$
2. $\mathrm{A}=\frac{75}{360} \times \pi \times x^{2} \quad \Rightarrow \quad \mathrm{~A}=\mathbf{0 . 6 5 4 5} \boldsymbol{x}^{2}$
or
$75^{\circ}=75 \times \frac{2 \pi}{360}=1.309$ rad $\quad A=1 / 2 \theta r^{2}=0.5 \times 1.309 \times x^{2}=0.6545 x^{2}$
3. The arc's angle is $360-120=240^{\circ}$ so the area, $A=\frac{240}{360} \times \pi \times 3.2^{2}=\mathbf{2 1 . 4 4 7}$
or
$240^{\circ}=240 \times \frac{2 \pi}{360}=4.1888$ radians $A=1 / 2 \theta r^{2}=0.5 \times 4.1888 \times 3.2^{2}=21.447$
4. $A=\frac{48}{360} \times \pi \times r^{2}=25 r^{2}=59.683 \quad$ radius $=\mathbf{7 . 7 2 5}$
or
$48^{\circ}=48 \times \frac{2 \pi}{360}=0.8378 \operatorname{rad} A=1 / 2 \theta r^{2} \Rightarrow 0.5 \times 0.8378 \times r^{2}=25 \quad r=7.725$
5. \quad Area sector $=\frac{85}{360} \times \pi \times 11^{2}=89.75$

Area triangle $=1 / 2 \times 11 \times 11 \times \sin (85)=60.27$

Shaded area $=$ sector - triangle $=89.75-60.27=29.48$
6. To find the angle: $\cos a^{\circ}=\frac{6^{2}+6^{2}-10^{2}}{2 \times 6 \times 6}=\frac{-28}{72} \quad a^{\circ}=\cos ^{-1}\left(\frac{-153}{72}\right)=112.89^{\circ}$

Arc length $=\frac{112.89}{360} \times \pi \times 2 \times 6=11.82$
Perimeter $=11.82+10=\mathbf{2 1 . 8 2}$
7. $\angle \mathrm{ABC}=80^{\circ}$ so $\angle \mathrm{ABO}=100^{\circ}$ $\angle A O B=\sin ^{-1}\left(\frac{\sin 100}{8} \times 7\right)=59.51^{\circ}$
$\angle \mathrm{OAB}=180-100-59.51=20.49^{\circ}$

Area $\triangle \mathrm{OAB}=1 / 2 \times 8 \times 7 \times \sin (20.49)=9.801$
(or by calculating the height of $\triangle \mathrm{OAB}=6.893$ and the base $=2.843$ and using $\mathrm{A}=1 / 2 \mathrm{hb}$)
Area sector $=\frac{59.51}{360} \times \pi \times 8^{2}=33.237$
Shaded area is difference $=33.237-9.801=\mathbf{2 3 . 4 4} \mathbf{c m}^{\mathbf{2}}$
8. The outer area is $=\frac{45}{360} \times \pi \times(r+5)^{2}=0.3927 r^{2}+3.927 r+9.817$

The inner area is $=\frac{45}{360} \times \pi \times r^{2}=0.3927 r^{2}$
The difference then is $3.927 r+9.817=25.5$
$r=3.99 \quad$ so $\mathbf{4} \mathbf{~ c m}$

