Level 2 Trigonometry Sectors and Segments #1

All curves shown are all parts of circles.

1. Find the perimeter of the sector

3. Calculate the shaded area

5. Calculate the shaded area

7. OAC is a sector, of radius 8 cm. $\angle ABC = 80^{\circ}$ and AB = 7 cm

What is the shaded area?

2. Find the shaded area in terms of *x*

4. The area is 25 m^2 . What is the radius?

6. Find the perimeter of the segment.

8. A concrete paving block is shown from above. It is 45° at the "centre" and 5 cm wide.

What is the length of the inner radius, r, if the shaded area is 25.5 cm^2 ?

Answers: Level 2 Trigonometry Sectors and Segments #1

Rounding errors will occur unless you carry all the decimal places.

1.
$$p = \left[\frac{110}{360} \times \pi \times 2 \times 7\right] + 7 + 7 = 27.44$$

or

$$110^{\circ} = 110 \times \frac{2\pi}{360} = 1.92 \text{ rad}$$
 $p = r\theta + 2r = 7 \times 1.92 + 7 + 7 = 27.44$

2.
$$A = \frac{75}{360} \times \pi \times x^2 \implies A = 0.6545x^2$$

or

$$75^{\circ} = 75 \times \frac{2\pi}{360} = 1.309 \text{ rad}$$
 $A = \frac{1}{2}\theta r^2 = 0.5 \times 1.309 \times x^2 = 0.6545x^2$

3. The arc's angle is $360 - 120 = 240^{\circ}$ so the area, $A = \frac{240}{360} \times \pi \times 3.2^2 = 21.447$

or

240° = 240 ×
$$\frac{2\pi}{360}$$
 = 4.1888 radians A = ½ θ r² = 0.5 × 4.1888 × 3.2² = 21.447

4.
$$A = \frac{48}{360} \times \pi \times r^2 = 25 r^2 = 59.683$$
 radius = **7.725**
or

$$48^{\circ} = 48 \times \frac{2\pi}{360} = 0.8378 \text{ rad } A = \frac{1}{2}\theta r^2 \Longrightarrow 0.5 \times 0.8378 \times r^2 = 25 \qquad r = 7.725$$

5. Area sector = $\frac{85}{360} \times \pi \times 11^2 = 89.75$ Area triangle = $\frac{1}{2} \times 11 \times 11 \times \sin(85) = 60.27$ Shaded area = sector - triangle = 89.75 - 60.27 = 29.48

6. To find the angle: $\cos a^{\circ} = \frac{6^2 + 6^2 - 10^2}{2 \times 6 \times 6} = \frac{-28}{72}$ $a^{\circ} = \cos^{-1}(\frac{-153}{72}) = 112.89^{\circ}$ Arc length $= \frac{112.89}{360} \times \pi \times 2 \times 6 = 11.82$ Perimeter = 11.82 + 10 = 21.82 7. $\angle ABC = 80^\circ \text{ so } \angle ABO = 100^\circ$

$$\angle AOB = \sin^{-1}(\frac{\sin 100}{8} \times 7) = 59.51^{\circ}$$

∠OAB = 180 - 100 - 59.51 = 20.49°

Area $\triangle OAB = \frac{1}{2} \times 8 \times 7 \times sin(20.49) = 9.801$

(or by calculating the height of $\triangle OAB = 6.893$ and the base = 2.843 and using A = $\frac{1}{2}hb$) Area sector = $\frac{59.51}{360} \times \pi \times 8^2 = 33.237$ Shaded area is difference = $33.237 - 9.801 = 23.44 \text{ cm}^2$

8. The outer area is $=\frac{45}{360} \times \pi \times (r+5)^2 = 0.3927 r^2 + 3.927 r + 9.817$ The inner area is $=\frac{45}{360} \times \pi \times r^2 = 0.3927 r^2$

The difference then is 3.927 r + 9.817 = 25.5

