## Level 2 Trigonometry Sectors and Segments \#2

All curves shown are all parts of circles.

1. Calculate the shaded area shown:

2. The sector's arc length is 16 . The angle of the sector is $70^{\circ}$. What is the area of the sector?

3. Find the perimeter of the shaded area

4. Two sectors have the same centre, and their bases form a straight line.

One is radius 60 m and one is 25 m .
The arc length of the larger radius one is 70 m .

What is the shaded area?

2. Find the the arc length, $a$.

4. The sector's arc is 12.1 long, on a circle of radius 3.4. What is the sector's area?

6. Calculate the area of the segment.

8. A segment AD of arc $60^{\circ}$ and radius 10 is split in two by a line from the centre to a point $25^{\circ}$ along at B .

What is the perimeter of the shaded area $A B C$ ?


## Answers: Level 2 Trigonometry Sectors and Segments \#2

Rounding errors will occur unless you carry all the decimal places.

1. $\mathrm{A}=\frac{113}{360} \times \pi \times 12^{2}=\mathbf{1 4 2 . 0 0}$
or
$113^{\circ}=113 \times \frac{2 \pi}{360}=1.972$ rad $\quad A=1 / 2 \theta r^{2}=0.5 \times 1.972 \times 12^{2}=142.00$
2. $a=\frac{75}{360} \times \pi \times 2 \times 8 \Rightarrow \quad \Rightarrow \quad a=\mathbf{1 0 . 4 7}$
or
$75^{\circ}=75 \times \frac{2 \pi}{360}=1.309 \mathrm{rad} \quad a=\theta r=1.309 \times 8=10.47$
3. $75^{\circ}=\frac{75}{360}=\frac{5}{24}$ of a full circle $=16$ long. If 16 is $\frac{5}{24}$ the circumference $=16 \times \frac{24}{5}=76.8$
$76.8=2 \pi r$, so radius $=76.8 \div 2 \pi=12.22$

$$
A=\frac{75}{360} \times \pi \times 12.22^{2}=\mathbf{9 6 . 4 4 5}
$$

or
$75^{\circ}=75 \times \frac{2 \pi}{360}=1.309$ rad using arc length $=r \theta \quad 16=r \times 1.309$
$r=12.22 \quad A=1 / 2 \theta r^{2}=0.5 \times 1.309 \times 12.22^{2}=96.445$
4. A circle of radius 3.4 has a circumference of $2 \times 3.4 \times \pi=21.36$
$\frac{12.1}{21.36} \times \pi \times 3.4^{2}=\mathbf{2 0 . 5 7} \quad$ (the angle is not required, but is $\frac{12.1}{21.36} \times 360=203.9^{\circ}$ )
or
using arc length $=r \theta \quad 12.1=3.4 \times \theta \quad \Rightarrow \theta=3.559$ rad
$A=1 / 2 \theta r^{2}=0.5 \times 3.559 \times 3.4^{2}=20.57$
5. Arc length $=\frac{85}{360} \times \pi \times 2 \times 11=16.32$
line $=\sqrt{ }\left(11^{2}+11^{2}-2 \times 11 \times 11 \times \cos (85)\right)=\sqrt{ } 220.9=14.86$

Perimeter $=16.32+14.86=\mathbf{3 1 . 1 8}$
6. To find the angle: $\cos a^{\circ}=\frac{2.4^{2}+2.4^{2}-4.1^{2}}{2 \times 2.4 \times 2.4}=\frac{-5.29}{11.52} a^{\circ}=\cos ^{-1}\left(\frac{-5.29}{11.52}\right)=117.34^{\circ}$

Area sector $=\frac{117.34}{360} \times \pi \times 2.4^{2}=5.898$
Area triangle $=1 / 2 \times 2.4 \times 2.4 \times \sin (117.34)=2.558$
segment $=$ sector - triangle $=5.898-2.558=3.34$
7. Make $\theta$ the angle at the centre of the white sector. From the arc length
$\frac{\theta}{360} \times \pi \times 2 \times 60=70 \quad \Rightarrow \theta=66.845^{\circ}$
Make $\Phi$ the angle at the centre of the grey sector. It is $180-\theta=113.155^{\circ}$
$\frac{113.155}{360} \times \pi \times 25^{2}=617.2 \mathbf{m}^{2}$
8. $\quad \mathrm{AC}=\frac{25}{360} \times \pi \times 2 \times 10=4.363$

Ignoring the centre line, we can solve the angles and side lengths.
$A D=\sqrt{ }\left[10^{2}+10^{2}-2 \times 10 \times 10 \times \cos (60)\right]=\sqrt{ } 100=10$
(or by recognising it as equilateral triangle, or by dividing in half and using RA trig etc)
Therefore $\angle \mathrm{OAD}=60^{\circ}$ (because equilateral, or by sine rule)
$\angle \mathrm{OAB}=180-60-25=95^{\circ}$
$A B=\frac{10}{\sin (95)} \times \sin (25)=4.242$
$O B=\frac{10}{\sin (95)} \times \sin (60)=8.693$, so $B C=10-8.693=1.307$
perimeter $A B C=4.363+4.242+1.307=9.912$

