Level 2 Trigonometry Sectors and Segments \#3

All curves shown are all parts of circles.

1. Calculate the shaded area shown:

2. The shaded area is $5 \mathrm{~m}^{2}$. What is a° ?

3. Calculate the shaded area

4. Two circles of radius 5 m are placed so that their centres are 8 m apart. What is the area of the overlap?
5. Calculate the perimeter of this shape

6. The perimeter is 25 m . What is r ?

7. Calculate the area of the segment.

8. There is a square of side edges 6 cm . An arc is taken out of an entire side, so that the nearest that arc reaches to the other side is 5 cm .

Find the shaded area remaining.

Answers: Level 2 Trigonometry Sectors and Segments \#3

Rounding errors will occur unless you carry all the decimal places.

1. $\mathrm{A}=\frac{68}{360} \times \pi \times 20^{2}=237.36$
or
$68^{\circ}=68 \times \frac{2 \pi}{360}=1.1868$ radians $\quad A=1 / 2 \theta r^{2}=0.5 \times 1.1868 \times 20^{2}=237.36$
2. The arc's angle is $360-150=210^{\circ}$ so the arc length, $a=\frac{210}{360} \times \pi \times 2 \times 3.2=11.73$ Add in the two radiuses, perimeter $=\mathbf{1 8 . 1 3}$
or
$210^{\circ}=210 \times \frac{2 \pi}{360}=3.665 \mathrm{rad} \quad \mathrm{p}=\mathrm{r} \theta+r+r=3.665 \times 3.2+3.2+3.2=18.13$
3. $5=f \times \pi \times 2.5^{2}$, where f is the fraction of the circle. $f=\frac{5}{\pi \times 2.5^{2}}=0.2546$
$0.2546 \times 360=91.67^{\circ}$
or
$5=1 / 2 \theta \times 2.5^{2} \quad \Rightarrow \theta=1.6$ radians
4. $25=\left[\frac{48}{360} \times \pi \times 2 \times r\right]+r+r=25 \quad \Rightarrow \quad 25=2.84 r \quad$ radius $=\mathbf{8 . 8 1}$
or
$48^{\circ}=48 \times \frac{2 \pi}{360}=0.8378 \mathrm{rad} \quad 25=r \theta+r+r \Rightarrow 25 \times 2.8378 \quad r=8.81$
5. \quad Area sector $=\frac{125}{360} \times \pi \times 4^{2}=17.453$

Area triangle $=1 / 2 \times 4 \times 4 \times \sin (125)=6.553$

Shaded area $=$ sector - triangle $=17.453-6.553=\mathbf{1 0 . 9}$
6. To find the angle: $\cos a^{\circ}=\frac{20^{2}+20^{2}-28^{2}}{2 \times 20 \times 20}=\frac{16}{400} \quad a^{\circ}=\cos ^{-1}\left(\frac{16}{400}\right)=87.71^{\circ}$

Area sector $=\frac{87.71}{360} \times \pi \times 20^{2}=306.16$
Area triangle $=1 / 2 \times 20 \times 20 \times \sin (87.71)=199.84$
segment $=$ sector - triangle $=306.16-199.84=106.3$
7. A right angle triangle 4 wide and 5 hypotenuse can be drawn: $\theta=\cos ^{-1}\left(\frac{4}{5}\right)=36.87^{\circ} \quad$ and we need $2 \theta=73.74^{\circ}$

The overlap is two segments, one from each centre..

(doing them like Q6) \quad Area sector $=\frac{73.74}{360} \times \pi \times 5^{2}=16.09$
Area triangle $=1 / 2 \times 5 \times 5 \times \sin (73.74)=12 \quad$ Overlap $=2 \times(16.09-12)=\mathbf{4 . 1 8} \mathbf{c m}^{2}$
8. A right angle triangle can be drawn

The height is half the square height $=3$
The width is one less than the radius as the circle pokes 1 cm into the square.

Using Pythagoras $r^{2}=3^{2}+(r-1)^{2} \quad$ giving $r=5$
$\theta=\sin ^{-1}\left(\frac{3}{5}\right)=36.87^{\circ} \quad$ and we need $2 \theta=73.74^{\circ}$
Area sector $=\frac{73.74}{360} \times \pi \times 5^{2}=16.09$
Area triangle $=1 / 2 \times 5 \times 5 \times \sin (73.74)=12$
Area of segment $=16.09-12=4 . .09$
Square's area $=36$, less the segment taken out $=36-4.09=\mathbf{3 1 . 9} \mathbf{c m}^{2}$

You can also calculate the angle at the centre of the circle using angle on 1 by 3 triangle $=\tan ^{-1}\left(\frac{3}{1}\right)=71.565^{\circ}, \quad$ doubled is 143.13° angle at centre is double angle at edge, so angle at centre $=286.26$

But the angle we want is on the other side, so angle we need $=360-286.26=73.74^{\circ}$
That gives $\theta=36.87^{\circ}$, and using the triangle above $r=3 \div \sin (36.87)=5$
[or you can use $6^{2}=r^{2}+r^{2}-2 \times r \times r \times \cos (73.74)$ so $r=5$]
Then as above.

