L2 Algebra Practice #3

- 1. Simplify as one log: $log_b(x) + 2 log_b(y)$
- 2. Simplify: $\frac{x^3 + 6x^2 + 9x}{x^2 + 3x}$
- 3. Make x the subject of: $y = \frac{4}{3x} 1$
- 4. Mary invests \$10 000 in government bonds. They pay 8% interest at the end of each year, which is then reinvested. The money she has after y years is therefore:

$$M = 10\ 000\ (1.08)^y$$

Where M =is the amount she has, in dollars.

And y = the number of full years it is invested.

After how many years will her sum with interest be \$25 000 or more?

- 5. Solve: $log_4(256) = x$
- 6. Solve: -2(x + 1) > 5
- 7. Solve: $4x 5 = \frac{3}{2x}$
- 8. Find two numbers that have a sum of 32 and a sum of their squares of 514.

Answers: L2 Algebra Practice #3

1.
$$\log_b(x) + 2 \log_b(y) = \log_b(x) + \log_b(y^2) = \log_b(x y^2)$$

2.
$$\frac{x(x^2+6x+9)}{x^2+3x} = \frac{x(x+3)(x+3)}{x(x+3)} = \frac{x(x+3)(x+3)}{x(x+3)} = x+3$$

3.
$$y = \frac{4}{3x} - 1$$
 $y + 1 = \frac{4}{3x}$ $(3x) (y + 1) = 4$ $x = \frac{4}{3(y+1)}$ $x = \frac{4}{3y+3}$

4.
$$M = 10\ 000\ (1.08)^y$$
 Putting in our values: $25\ 000 = 10\ 000\ (1.08)^y$ $\log\ (25\ 000) = \log(10\ 000\ (1.08)^y)$ $\log\ (25000) = \log(10000) + y\log\ (1.08)$ Rearranging: $y = \frac{\log(25000) - \log(10000)}{\log(1.08)} = 11.9059$.

Need to round up, since interest at end of the year

12 years

5.
$$\log_4(256) = x$$
 If $y = b^x$ then $\log_b y = x$ so here $256 = 4^x$ $x = 4$

6.
$$-2(x+1) > 5$$
 $-2x - 2 > 5$ $-2 - 5 > 2x$ $x < -3.5$

7.
$$4x - 5 = \frac{3}{2x}$$
 $2x(4x - 5) = 3$ $8x^2 - 10x = 3$ $8x^2 - 10x = 3$ calculator $x = -0.25$ or 1.5

8.
$$a + b = 32$$
 and $a^2 + b^2 = 514$ rearranging the first: $a = 32 - b$ substituting to remove $a : (32 - b)^2 + b^2 = 514$ expanding: $1024 - 64b + b^2 + b^2 = 514$ $2b^2 - 64b + 510 = 0$ $b = 15$ or 17 solving using $a + b = 32$ gives $a = 17$ or 15 **The numbers are 15 and 17**

(Q4 and Q8 are Merit)