L2 Merit+ Exponents #2

1. Solve:
$$9^x \times 4^{x-2} = 486$$

2. Solve:
$$16^x - 4^{x+1} = 192$$

3. Solve:
$$\frac{25^{x-1}}{5^{x+2}} = 125$$

4. Make
$$q$$
 the subject of the formula: $512 = 4^{\frac{m}{q}+1}$

5. Solve:
$$\frac{6^x}{450} = \frac{8^x}{900}$$

6. Fully simplify:
$$\frac{25^{x}-5^{x+1}}{125^{x}-5^{x+2}}$$

7. Solve:
$$800 \times 3^x = 5^{x+2}$$

8. For which values of
$$m$$
 can you not solve: $3^{mx-3} = 27^{x^2}$

Answers: Merit+ Exponents Practice #2

1. Solve: $9^x \times 4^{x-2} = 486$ Need the x to be alone so we can multiply to combine

$$\Rightarrow 9^{x} \times 4^{x} \times 4^{-2} = 486$$
 $\Rightarrow 9^{x} \times 4^{x} = \frac{486}{4^{-2}}$ $\Rightarrow 36^{x} = 7776$ $\Rightarrow x = 2.5$

2. Solve: $16^x - 4^{x+1} = 192$ The separation by – into three terms means quadratic. $\Rightarrow (4^x)^2 - 4 \times 4^x - 192 = 0 \text{ (as } 16^x = 4^x \times 4^x \text{ and } 4^{x+1} = 4^1 \times 4^x)$

$$\Rightarrow (4)^{2} - 4 \times 4 - 192 = 0 \text{ (as 16)} = 4 \times 4 \text{ and } 4 = 4 \times 4 \text{)}$$

$$\Rightarrow (4^{x} - 16)(4^{x} + 12) = 0 \qquad \Rightarrow 4^{x} = 16 \text{ or } 4^{x} = -12 \text{ (not possible)} \qquad \Rightarrow x = 2$$

- 3. Solve: $\frac{25^{x-1}}{5^{x+2}} = 125$ All are powers of 5, so the easiest method is to use that. $\Rightarrow \frac{5^{2(x-1)}}{5^{x+2}} = 5^3 \Rightarrow 5^{2x-2} = 5^3 \times 5^{x+2} \Rightarrow 2x-2 = 3+x+2 \Rightarrow x = 7$
- 4. Make q the subject of the formula: $512 = 4^{\frac{m}{q}+1}$ All base 2 which is the easy way.

$$\Rightarrow 2^9 = 2^{\frac{2m}{q} + 2} \qquad \Rightarrow 9 = \frac{2m}{q} + 2 \qquad \Rightarrow q = \frac{2m}{7}$$

Or, if you log both sides first
$$512 = 4^{\frac{m}{q} + 1} \Rightarrow \log 512 = (\frac{m}{q} + 1)\log 4$$
$$\Rightarrow \frac{\log 512}{\log 4} = \frac{m}{q} + 1 \Rightarrow 4.5 = \frac{m}{q} + 1 \Rightarrow q = \frac{m}{3.5}$$

5. Solve: $\frac{6^x}{450} = \frac{8^x}{900}$ Need to combine the x terms in order to solve.

$$\Rightarrow \frac{900}{450} = \frac{8^x}{6^x} \qquad \Rightarrow 2 = \left(\frac{8}{6}\right)^x \qquad \Rightarrow x = \frac{\log 2}{\log \frac{8}{6}} \qquad \Rightarrow x = 2.409$$

- 6. Fully simplify: $\frac{25^{x} 5^{x+1}}{125^{x} 5^{x+2}}$ Get to powers of five, then find common factors to simplify $= \frac{5^{2x} 5^{x} \times 5}{5^{3x} 5^{x} \times 25} = \frac{5^{x}(5^{x} 5)}{5^{x}(5^{2x} 25)} = \frac{5^{x}(5^{x} 5)}{5^{x}(5^{2x} 5)(5^{x} + 5)} = \frac{1}{5^{x} + 5}$
- 7. $800 \times 3^x = 5^{x+2}$ No similar base. Get to simple power of x first, then combine $800 \times 3^x = 5^x \times 5^2$ $\Rightarrow \frac{3^x}{5^x} = \frac{25}{800}$ $\Rightarrow 0.6^x = 0.03125$ $\Rightarrow x = 6.785$
- 8. For which values of m can you not solve: $3^{mx-3} = 27^{x^2}$ Note both sides powers of 3 $\Rightarrow 3^{mx-3} = 3^{3x^2} \Rightarrow mx-3 = 3x^2 \Rightarrow 0 = 3x^2 - mx + 3 \quad \Delta < 0 \text{ as unsolvable}$ $\Rightarrow (-m)^2 - 4(3)(3) < 0 \Rightarrow m^2 < 36 \Rightarrow -6 < m < 6$

